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INTRODUCTION & MOTIVATION

From Raw Text to Insights " _ _
Extract Entities & Relationships

Need: t8 ®

« Automated methods to track evolving, complex text in specialized
domains

Solution:

« Entity Relation (ER) graphs structure text, clarifying ambiguities
and dependencies

Goal: =| E=|version 1
 Detect document changes using ER graphs to improve text =] version 2

analysis

Analyze Graph Evolution

CHALLENGES

Balancing the 3Cs for Optimal Knowledge Graph Construction

Consistency:
Incomplete * Outputs of LLMs lack determinism, as they are sampled from a

Completeness
learned probability space
« Leads to inconsistencies in the generated knowledge graphs

Consistency

Challenge Completeness:
Zone . . . .
~ « Parsing documents with LLMs often results in graphs that fail to
5 6\%@ capture all relevant or necessary information
& @ . .
%};, (QQ\ « Leads to gaps in the representation
Q N\
e Correctness:
 LLMs are prone to hallucination, sometimes inventing entities or
relationships that do not exist in the source document
Correctness . .
« Leads to inaccuracies
METHODOLOGY RESULTS

0.40 ROUGE Metrics

Precision

« We employ various entity extractors, including classical CRF-
based models and neural-based models, to construct complete
and correct ER graphs
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* Precision (Consistency):. Weak ROUGE-2 precision indicates
missing relevant entities across repeats

« Recall & F1-Score (Completeness & Correctness). Low
ROUGE-2 recall and ROUGE-2/ROUGE-L F1-scores highlight
missed multi-entity relationships and the need to reduce
hallucinations

Text Comparison

FUTURE WORK

* Fine-tuning models  Exploring hybrid CRF-neural methods

« EXxpanding training data  Enhancing graph construction for complex relationships

« Improving multi-entity relationship recall (ROUGE-2) « Boosting structural evaluation (ROUGE-L)
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